JOURNAL OF COMPUTATIONAL PHYSICS144,626—661 (1998)
ARTICLE NO. CP985925

Vlasov Simulations Using Velocity-Scaled
Hermite Representations

Joseph W. Schumé&r! and James Paul Holloway

*Code 6770, Naval Research Laboratory, Washington, DC 2087843 Cooley Building,
Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard,
University of Michigan, Ann Arbor, Michigan 48109-2104
E-mail: schumer@calvin.nrl.navy.mil and hagar@engin.umich.edu

Received August 28, 1997; revised January 13, 1998

The efficiency, accuracy, and stability of two different pseudo-spectral methods
using scaled Hermite basis and weight functions, applied to the nonlinear Vlasov—
Poisson equations in one dimension (1d-1v), are explored and compared. A variable
velocity scaleU is introduced into the Hermite basis and is shown to yield orders
of magnitude reduction in errors, as compared to linear kinetic theory, with no in-
crease in workload. A set of Fourier—Hermite coefficients, representing a periodic
Gaussian distribution function, are advanced through time wit® @st?)-accurate
splitting method. Within this splitting scheme, the advection and acceleration terms
of the Vlasov equation are solved separately usin@ ant*)-accurate Runge—Kutta
method. The asymmetrically weighted (AW) Hermite basis, which has been used pre-
viously by many authors, conserves particles and momentum exactly and total energy
to O(At®); however, the AW Hermite method doestconserve the square integral
of the distribution and is, in fact, numerically unstable. The symmetrically weighted
(SW) Hermite algorithm, applied here to the Vlasov system for the first time, can
either conserve particles and energy (fyr even) or momentum (foN, odd) as
At — 0, whereN, is the largest Hermite mode number. The SW Hermite method
conserves the square integral of the distribution and, therefore, remains numerically
stable. In addition, careful velocity scaling improves the conservation properties of
the SW Hermite method. Damping and growth rates, oscillation frequencies, E-field
saturation levels, and phase-space evolution are seen to be qualitatively correct dur-
ing simulations. Relative errors with respect to linear Landau damping and linear
bump-on-tail instability are shown to be less than 1% using only 64 velocity-scaled
Hermite functions. Comparisons to particle-in-cell (PIC) simulations show that as
the number of particles increases to more thah fie PIC solutions converge to
scaled SW Hermite solutions that were found in onl¢@ of the run-time. The SW
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Hermite method with velocity scaling is well-suited to kinetic simulations of warm
plasmas. ( 1998 Academic Press
Key WordsVlasov solvers; spectral methods.

INTRODUCTION

In this article, we describe an efficient numerical kinetic method for 1d-1v plasma sir
lations which can accurately resolve the fine-scales of phase-space distributions of ch.
particles. By efficiently evolving these distributions while maintaining numerical stabili
preserving several physical constants-of-motion, and making reliable linear and nonli
physical predictions, we will demonstrate this one-dimensional method as a benchi
and as a promising alternative to other accepted numerical kinetic methods for collisior
charged-particle systems.

One of the weighted residuals methods described below, the symmetrically weig
(SW) Hermite method, uses Hermite functions in velocity as both basis and weight fi
tions and will prove to be most efficacious. A method based on Hermite basis funct
but Hermite polynomial weights, the asymmetrically weighted (AW) Hermite method, w
prove to be less stable, even though the AW Hermite method has better conservation pr
ties overall. Both of these Hermite methods, when properly scaled, will prove to be supe
to unscaled Hermite methods and more accurate than particle-in-cell (PIC) method
predicting growth/damping rates and frequencies of warm plasma phenomena. In the
of this introduction, we will describe the basic physical model being examined and sc
of the numerical techniques that have been used previously to treat it.

The one-dimensional (1d-1v) collisionless evolution of a charge-neutralized elec
plasma is governed by the Vlasov—Poisson equations,

orix, U, v _IE 0
at +u3X Ne o0 u ?
E t g o 2
M__e/ f(x,u,t) — fi(u,0)du, ()
aX €0 J-o0

wheref (x, u, t) is the electron distribution function, put in terms of the independent pha
space variables, positione [—L /2, L /2], velocityu € (—oo, o), and time. The electron
chargege, massme, and the permittivity of free-spaeg are in rationalized mks units. In
the simulations shown here, we model the evolution of electron plasma waves neutra
by a free-streaming spatially uniform ion backgroufidu, 0) = [ f(x, u, 0) dx; hence,
the spatially averaged electric field is zero for all time. This standard model [1, 2] of
electron plasma with infinitely massive ions is consistent with Ampere’s law [3], provid
that the spatially averaged initial current is zero for all time.

Kinetic methods, which include PIC and Vlasov solvers, are required for problems v
complicated field-particle interactions in plasmas with evolving phase-space profiles
cannot be accurately modeled with charged fluid descriptions. PIC and cloud-in-cell (C
algorithms have been developed [4, others], quite frequently used, and have become
dard technologies in the design and evaluation of neutral and nonneutral plasma sys
However, PIC/CIC codes, based on the modeling of plasmas usfrig 10/ macroparti-
cles, are inherently noisy. In plasmas with tenuous velocity—space profiles there mig}
few “numerical” particles coinciding with the phase velocities of the electrostatic wav
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In addition, collisionless plasmas can have fine-scale phase-space structures, such as
eyes [5],” that call for very precise modeling. While PIC methods are relatively easy
implement, Vlasov solvers, in contrast, are free of artificial discrete particle noise, may
better suited for warm or tenuous plasmas and can model low density regions of phase -
as accurately as they model high density regions.

Besides spectral Vlasov solvers, which will be outlined further below, one may cho
to use standard finite difference schemes [6], finite elements schemes [7], or met
which integrate the distribution along “characteristic orbits” [8—10]. All three require
low-order interpolation to either calculate derivatives or to map the distribution back on
fixed grid. These schemes can produce numerical smoothing, which has a beneficial
because it reduces the secular increase of velocity derivatives with time (a fundame
problem incollisionlessplasma simulations [9, 11]); nevertheless, this benefit is gained
compromising physical fidelity with the introduction of artificial dissipation and incorre
dispersion. In general, conservation of particles, momentum, and energy is only approxi
in such methods.

Weighted-residuals and pseudospectral methods tend to generate conservative andr
persive schemes [12]. Hence, spectral methods are ideally suited for modeling collisiol
plasmas in which the evolution of the fine-scales is significant. Many suitable sets of b
and weight functions have been used for the spectral discretization of the Vlasov—Poi
system in one or more dimensions. Because the velocity profile of solutions of the Vle
equation naturally develop fine scales which are difficult to resolve (a process know
“filamentation” [9, 11, 13, 14]), special attention must be given to the representatior
velocity space. Fourier-based velocity representations [13, 15] cannot conserve mo
tum due to the periodicity of the basis; particles with large positive velocities may
accelerated and instantly become patrticles with large negative velocities. Errors in pal
momentum, by coupling between electrostatic waves and particles with velocities nea
phase velocity of the wave, can lead to errors in electrostatic wave damping and gro
The Chebyshev velocity representation in [16] also does not conserve momentum or
energy.

The normalized Hermite basis is a natural choice for Maxwellian-like velocity profil
because the lowest order expansion function is a Gaussian function [17]. One of the |
objectives of this article is to demonstrate the benefits and limitations of two different
orthonormal sets of Hermite basis and weight functions, namely, asymmetrically weig|
(AW) and symmetrically weighted (SW) Hermite bases, given by

SW: W, (v) = W"(v) = Che""/2H,(v) (3)
AW: W, (v) = Coe " Hn(v), W"(v) = CyHn(v), @)

where H,(v) is the standard Hermite polynomial normalized so thiatv) ~2"v" for
largev andC,, = (7 ¥/4y/2"n1)~. In the weighted residuals methods to be developed he
superscripted functions are weight functions and subscripted functions are basis funct
Detailed analysis will later show that algorithms derived from these two bases yield diffe!
conservation properties, optimization characteristics, and numerical stability criteria.
No Vlasov method based on the SW Hermite representation has been developed
this time. Fourier—Hermite (FH) weighted-residual schemes [14, 18-2(},in) using
AW Hermite functions have been implemented before but were dismissed because of
poor velocity resolution properties [21]. However, recent work suggests that with pro



VLASOV SIMULATIONS 629

selection of the system velocity scale length, the Hermite basis can be quite compe
when modeling functions with Gaussian-shaped profiles [22—24] such as thermally w
plasmas. Without careful velocity-scaling of the Hermite functions, however, fine-sc:
develop at the level of the coarse velocity grid, requiring spectral expansions ranging
500 to 1500 Hermite modes to achieve only moderate accuracy levels [21, 25, 26]
alleviate this requirement, some of these earlier FH algorithms incorporated artificial da
ing or monotonic reduction of the Hermite expansion ofdgiover time [14, 25-27]; un-
fortunately, artificial damping changes the interesting collisionless physics and decrec
Ny eventually leaves the simulation with no velocity resolution whatsoever.

In addition, previous Vlasov algorithms designed around FH weighted-residual mett
were unnecessarily inefficient. By evaluating the nonlinear teapf of Eq. (1) in trans-
formed Fourier space, an addition@alNy) operations per coefficient per time-step wer
incurred, whereNy is the number of spatial mode numbers. In this article, we employ
O(At?)-accurate splitting technique similar to that used by Cheng and Knorr [9] and Klin
and Farrell [13] which decouples the advection (free-streaming) and acceleration tern
the Vlasov equation (1) into two separate first-order partial differential equations. Separ:
the two-terms of Eq. (1) and performing the nonlinear multighy, f in x-space makes the
algorithm more efficient (a more detailed operational count is shown below) with an acc
able level of accuracy due to the smali used in the study of “collisionless” phenomena

For the simulations presented here the spatial dependence of the plasma distrib
function f (x, u, t) is assumed to be periodic and is, therefore, represented with a FoL
basis in space. The velocity profile is, at least initially, assumed to be Maxwellian-like ar
represented with one of the two different bi-orthonormal Hermite basis sets (SW and /
described above. These basis sets are used to develop a weighted-residual advection e
and a collocation acceleration equationxXispace) for application of the splitting scheme

To optimize the Hermite representations, we introduce a velocity-&t¢aie be used
during simulations as a parameter to enhance spectral accuracy [22]. One goal o
article is to compare the velocity-scaled AW and SW Hermite methods against unsc
representations. We will show that for a fixed number of unknowns using the opfimal
scale can improve conservation properties and solutions considerably, thereby allow
reduction in the needed number of unknowns for a desired precision level and making
method more efficient. Another goal is to point out that the SW Hermite method is supe
to the AW Hermite method because it conserfgs 2dx du while the latter does not,
thereby assuring long-time stability of the SW Hermite method.

Analysis and comparison of the SW and AW Hermite algorithms will focus on efficien
numerical stability, scaling of errors with velocity expansion ordgrand velocity-scale
U, and conservation of important physical quantities, such as particles, momentum,
total energy in the fully discrete system. In addition, a periodic PIC code ES1 [4] will
used as a reference to test the two FH methods, basing the comparison on their resp
modeling of the Landau damping phenomena in a nearly uniform Maxwellian plasma
their modeling of electrostatic instabilities in a plasma with a “bump-on-tail” profile.

THE SPLITTING ALGORITHM

Toimprove the computational efficiency of the FH spectral method to be developed be
we employ a well-known splitting technique used by Cheng and Knorr [9] and Klimas ¢
Farrell [13] which decouples the advection and acceleration terms in the Vlasov eque
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using separate mappingsandV,
f (X, U, to+ At) = XaraVarXarz f(X, U, to) + O(AL®). ()

Here the advection mapping is the solution ofX = —udX with X(0)=1; this map
free-streams the distributiof(x, u, t) in space at a constant velocity for tim /2. The
acceleration mappiny is the solution o = —(ge/me) E(X)3,V with V(0) = | ; this map
accelerates the distributiofn(x, u, t) in velocity with a constant acceleratiogE (x)/me
forward in timeAt. We shall see later that this method is more efficient than a similar uns
algorithm.

Rather than explicity mapping the distribution function using Eq. (5), we advar
f (x, u, t) forward one time step by numerically solving, in order, the following sequen
of differential equations, each taking its initial data from the previous step:

of (x,u,t) of
Xatj2 & = Y3 f(X, U, 1) — f(x,u,ta) (6)
. JE(X, t o0
Poisson IEX.ta) _ Ge [/ f(X,u,ty)du—ne| — E(X,ta) (7)
ax € |J—oo
of (x,u,t) Oe of
Vat & T = —EE(X,ta)a—u, fx,u,ta) — f(X u,tp) (8)
af (x,u, t of
XAI/Z g % = _uﬁa f(X7 u, tb) g f(X’ u, t0+ At)' (9)

The effective algorithmic sequence is shown schematically in Fig. 1 in a phase spa
spatial lengthL with maximum resolved velocitymax. The temporal positions, =t, +
At/2 andt, =t, + At are not physically realizable points in time but are only used fc
labeling the algorithmic steps. Solution of Eq. (6) free-stredrs u, t,) for a half time-
stepAt/2 from timet, to “time” t,. After free-streaming, we calculate the E-field using
f (X, u, ty) by solving Eq. (7). The distributiorf (x, u, t) is then accelerated for a full
time-stepAt from “time” t; to “time” t, by solving Eq. (8) withE (X, ty) fixed in time. To
finish the algorithm sequence, we solve Eq. (9) using the distribution information at “tin
tp by advectingf (x, u, t,) forward At/2 fromty to timet, + At. This splitting technique,
as written, isO(At?) accurate (see Appendix A).

In practice, we may reduce the computational effort by u¥ing2X at;2 = Xar and still
retainO(At?) accuracy, provided that the half time-step advection sotves are applied
at the beginning and the end of the simulation.

FOURIER-HERMITE SPECTRAL REPRESENTATION

In order to numerically solve Egs. (6)—(9) and advance the distribution function
time, we first discretize space and velocity using Fourier—Hermite based spectral i
ods. The Fourier eigenfunctioris, (x) = [®¥(x)]* = &k*?/L) | orthogonal in the domain
[-L/2<x<L/2], are ideally suited for representing the assumed spatially periodic c
tribution function. For the velocity dependence of the distributidigs, u, t), we choose
basis functions which have a Gaussian as their zeroth-order basis function, the orthonc
Hermite functions. In this article, we will compare algorithms derived from the two ba
sets of bi-orthonormal Hermite polynomials introduced previously in Egs. (3) and (4),

SW: W, (v) = W"(v) = Che " /2H, (v) (10)
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FIG. 1. One-dimensional phase space grid and effective particle motion in the splitting scheme. The s
resolution is uniform while the velocity resolution is nonuniform, defined by the Gauss quadrature points.

AW: W, (v) = Che " Hp(v), ¥"(v) = CyHn(v), (11)

where H,(v) is thenth Hermite polynomial normalized so théf,(v) ~2"" asv — oo
[17], Ch = (x¥4/2°n1)~1 is a normalization constant, and=u/U is a dimensionless
velocity, scaled by the optimizing velocity scdle The use of the velocity scalé can
greatly improve the spectral accuracy of Hermite-based representations of Gaussian-s
functions [22—-24]. However, the practical benefits of velocity scaling have not been pr
ously applied to modeling of the nonlinear Vlasov—Poisson system.

Both Hermite bases are bi-orthonormal in the infinite domain, meaning that

/OO M)W (v) dv = &, (12)

oo

and they satisfy two-term recursion relations [17],

v (v)
vWh(v)

n+1

2

(13)

\IJnH(v) n
+1/5
Wnia(v)

\ynl(v)]

2 Wn_1(v)
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and derivative relations,

n n+1 n—1
SW:E W(v) _ In4+1 | ¥"(v) +\/ﬁ wN=*(v) (14)
dv | Wh(v) 2 | Wa(v) 2 | Wy_a1(v)
n n-1
Aw:g W) | V2N 1(p) (15)
dv | Wn(v) -2+ DWWy (v)

forn>0.
The Fourier—Hermite representation for the plasma distribution fundtion u, t) is
written, using either the AW or SW basis, as

Nx/2-1 Ny

foouty= > > FMO)dnx)Wn(v), (16)

m=—N,/2 n=0

wherev =u/U, m is the Fourier mode numban,is the Hermite mode number, and the
functions®,(x) andW¥,(v) are the Fourier and Hermite basis functions, respectively. In 0
method, the initial coefficient§™"(0) are calculated by numerical integration of the initia
distribution functionf (x, u, 0) with the Fourier and Hermite weight functiodg"(x) and
W"(v). Using Gauss quadrature formulas suitable for Fourier and Hermite bases, we
write

f™0) = Ui/ f(x,u, 0)®n(X)¥,(v)dx du a7)
1 M Ny

A=Y Drn(X)) Y weWn(ve) (X, U, 0). (18)
NxU j=0 k=0

The coefficients ™"(0) are used as initial conditions for the FH simulations to be present
The Ny spatial point; are equispaced betweenl[ /2, L /2], including one endpoint. In
practice, the sum over the indgxis performed using a standard fast Fourier transfor
(FFT) routine. TheN, + 1 Gauss—Hermite quadrature pointsare determined by the roots
Wp,+1(vk) =0 and scalingly = U v,. The Gauss—Hermite quadrature weighisused in
Eq. (18) are given [17] by

(19)

wy =

2Ns (N1 /7 X{evﬁ, AW,
(Nu + 1) [Hy, 0]

e/2, SW.

With the Hermite scal&, the maximum resolved velocity in the systemuig.x=vn,U,
noting thatvy, ~ +/Ny. Interior roots of the Hermite polynomials anet equispaced in
[—Umax, Umax] but have the highest velocity resolution in the center of the systenune@r,
i.e., fine-scale structures naag 0 are more highly resolved with Hermite-based method
After initially calculating the Fourier—Hermite coefficients""(0), no further Hermite
transforms are required until the output is postprocessed for display, thereby avoi
O(Ny) operations per coefficient per time-step.

For spectral accuracy of the SW Hermite representation |(f.8|,< Cn=PVp and some
constantC > 0), the results in [22] require that the distribution be infinitely differentiabl
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and exponentially decaying as| — oo, e.g. f (u) =e V. Because of the Hermite nor-
malizations, these conditions imply that the AW Hermite representation is limited to lar
values of velocity scal® in order to satisfy the bound

u2
[f(w <M exp(—pﬁ> (20)
for constantsM > 0 and p > 1. For example, when expanding a Maxwellian distribu
tion of thermal widthvy, using the AW Hermite basis, the velocity scdllemust sat-
isfy U > Umin = vn/+/2. The restriction thus implied for the AW Hermite expansion i
slightly cumbersome. Because the maximum resolved velogityis proportional tdJ, the
AW Hermite expansions will have minimum allowable resolutivn ~ vy, /+/Ny. The SW
Hermite expansions are not so limited. One of our goals is to assess the benefits and |
tions of each Hermite method over a wide range of velocity sd¢a|especially with these
scaling limits in mind.

To develop equations for the advection mappidg;,», we multiply Eq. (6) by
®M(x)W"(v) and integrate to find a system of ordinary differential equations (ODESs)
the advection of the distributiori (x, u, t), cast in terms of the FH coefficients™"(t).
These ODEs are written

0 = EME Temea) + VR i), (21)

where we used = u/U in the Hermite weight functions. Equation (21) was derived usir
the two-term Hermite recursion relation shown in Eq. (13), so the AW and SW formu
have the same form. The solution of this systemNQtN, + 1) coupled ODEs is called
the “X-shift.” In this work, these ODEs are solved using@tAt#)-accurate Runge—Kutta
(RK4) algorithm [28] to advance the distributidin(x, u, t) forward At/2 from timet, to
“time” t, and again from “time't, to timet, + At (see Fig. 1).

A time-stepping scheme with a rather large absolute stability region such as RK4 ca
very useful for kinetic problems. The use of a high-order RK scheme reduces the influen
the very few fast moving particles which set the Courant limit. An RK2 scheme is unste
for imaginary (oscillatory) eigenvalues and so it is unsuitable for a collisionless kine
problem, while use of an RK3 scheme would require an increase in the number of opera
because of its smaller stability regime. To obtain adequate stability withthe®)-accurate
Adams—Bashforth (AB3) scheme, the computational workload increases up to 2.5 ti
compared to the RK4 method for the present application. These computational effici
comparisons will be discussed in detail below. In these simulations, the RK4-based spli
scheme was chosen on the basis of high efficiency and stability. Other more accurate
stepping schemes could probably be designed as well.

It is important to note the truncation error introduced by the X-shift througimthe\,
equations for all of the nonzero Fourier modrsTo close the set of coupled ODEs, we
arbitrarily set the coefficients™Net1(t) to zero (other closure schemes have been discuss
for example, see Refs. [14, 26]). In the exact system with an infinite number of Herr
coefficients, the coefficients™Ne*1(t) are, of coursenotzero. Fortunately, this truncation
error can be made small if we have a spectrally accurate representatibtxfar, t); for
functions with singularities in the complaxplane the error in the SW Hermite expansion i

fm, Nu+1 O(Nufl/4efw(2Nu+1)1/2)’ (22)
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FIG.2. Truncation error estimates versus the velocity staiesing the AW Hermite method for a “bump-on-
tail” distribution. Thermal velocity and drift velocity were arbitrarily fixedwgt = 1.32619 m/s andq =5m/s,
respectively.

whereuw is the distance from the real axis to the nearest singularity [22]. Reducing the vi
city scaldJ canimprove spectral accuracy by increasirgnd reduce the truncation error by
orders of magnitude. However, the estimate in Eq. (22) is valid only for asymptotically la
Ny; since the maximum resolved velocityax oc U+/Ny, makingU too small may require a
largerN, in order to well-represent the tails of the Maxwellian. On the other hakdigtoo
large, the distribution appears narrow and requires high-order Hermite functions to repre
the large gradients. We therefore expect an optimatmediatevalue ofU and that finding
this optimal value will result in dramatic decreases in the truncation error. Figure 2 sh
the change in the ratidf N1/ 9| versus velocity-scald from the AW Hermite expansion
of the bump-on-tail distribution in Fig. 15; we see that selection of the optimal scale len
U for a fixed value of\, results in orders of magnitude reduction in the truncation error

In order to avoid the numerically expensive convolution sum resulting from the nonlin
term E9, f, the acceleration mapping,; is applied by solving a differential equation for
the Hermite coefficients "(x, t) in x-space. Multiplying Eqg. (8) by the Hermite weighting
function ¥"(v) and integrating, we find a system of ODEs for the Hermite coefficier
fN(x, t), written

IN(X, 1) V20.E(X.ta) [ VNIMHX D), AW,
at  meU AWV L ) — VR ETR X D], SW,

wherev = u/U. Both of these systems of equations in Eq. (23) were derived after integrat
by parts and use of the Hermite derivative relations in Egs. (14) and (15).

Solution of either set of coupled equations in Eq. (23) is called a “V-shift.” The V-shift
performed using an RK4 method for each Hermite coefficient oxthed and effectively
accelerates the distributioh(x, u, t;) at “time” t, forward one time-step\t to “time”

(23)
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ty. Because the X-shift is performed using coefficieht(t), a Fourier transform must
be performed before (to gdt'(x, t;)) and after (to getf ™"(t,)) each V-shift. The E-field
E(x, ty), calculated by solving Poisson’s equation (described below), i<bektanturing
the V-shift. Hermite transforms costir@(2N,) operations per coefficient are not require
during the simulations; only the initial Hermite coefficierftd(x, 0) are needed.

The AW Hermite V-shift equations shown in Eq. (23) form a closed system; beca
fNt1(x, 1) is not required, the truncation error comes only from the AW Hermite X-sh
equations. In contrast, the SW Hermite X-shift and V-shift have very similar formulas, b
requiring some truncation condition for which we ut®&MNet1 =0. As stated earlier, the
velocity space truncation errors in each method may be reduced with a well-chosen vel
scaling or by increasing the Hermite ord.

Exact advection and acceleration mappings for the AW Hermite algorithm have b
derived [29], but the computational cost@y N,) operations per coefficient, as compares
to O(1) per coefficient for the RK4 scheme. Exact X-shifts and V-shifts would allow 1
gains in accuracy due to tf@(At®) errors of the splitting method. It is interesting to note
however, thagxactsolutions of the field-free problem (pure free streaming) and the spatie
uniform problem (plasma oscillations) can be recovered [24] using the AW Hermite mett

Before we can apply the V-shift, we need to evaluate the electric E¢ld t,) at time
ta (see Fig. 1). Inserting Eq. (16) into Poisson’s equation (7) and using the Hermite b
functions, we find

Ny /2—1
E(X, t) U
D DI L (ST (24)
X Eo
m=—Nx/2
where
0
m0 — fm (ta)» AW» (25)
Mo lon f™(ta), SW.
The coefficientdg, are given by the recursion
° n—1
IOn = / ‘I"n()k) dr = n IO,n72 (26)

with 1go=+/27%* and lo; = 0. With the E-field Fourier representatioB(x, ta) = >,
EM(ty) @m(X), we may perform differentiation with respectxo

Ne/2—1

Bt _ 5~ (Z”L'm Em(ta)> Pm(x). @7

ox m=—Ny/2

and then identify the coefficienis™(t,) in Egs. (24) and (25), written

iLqu = MOt AW, m# 0,
Em(ta) N < 27‘[62 ) % Zr’:‘io |0n fmn(ta)v SW» m # Os (28)
0, both m= 0.
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EC(ty) is set to zero [3] for all time during the simulations shown here. The coefficiel
E™(ty) in Eq. (28) are inverse Fourier transformedgax;, t) for use in the accelerating
V-shift shown in Eq. (23). If an external, uniform, time-varying E-field is desi&¥},)
may be varied appropriately before each V-shift.

OPERATIONAL COSTS

To help assess the two methods being described here, we now provide some account
the floating point operations required of each. Memory access speeds may play a signi
role in the design of array sizes and algorithms but will not be considered here since
are very architecture dependent. In this analysis, we will compare the fully discrete AW
SW Hermite methods, both advanced with a RK4-ba3edt?)-accurate splitting scheme,
as formulated in the previous sections. In addition, we will compare the SW scheme to't
other time-stepping options, namely (1) application of an RK3-bsgkidcheme, (2) use of
a Runge—Kutta basathsplitscheme, and (3) use of@(At®)-accurate Adams—Bashforth
(AB3) unsplitscheme. Here, we assume the computational time required for each flos
point “multiply” ® and each “add® is equal. The number of coefficients or unknown:
required to represent the distributidrix, u, t) during any time-step il (N, + 1).

From Eq. (21), we recall that the X-shift may be written

“mn

f (t) — Am,n+1fm.n+1(t) + Am,n f m,n—l(t), (29)
whereA™ = —i/2n7mU/L. The RK4 scheme requires four right-hand side (RHS) ev
luations of Eq. (29) with an overhead of 13 floating point operations, so the operational
for each X-shift is 25 floating point operations per unknown. In contrast, an RK3-ba:
X-shift would require only 19 floating point operations per unknown.

The AW and SW V-shifts may be written

‘N Fn(x) fnil(xﬂ t)v )
frxt= N (30)
—3[MM00 £ (x, 1) = 00 F7H(x, D], SW,
wherel'(x) = +/2ng.E (x)/meU. In addition to the four RHS evaluations of Eq. (30) an
the 13 operations of overhead for the RK4 evaluation, we must also perform two FFT
transform the coefficient§™"(t) into f"(x, t) and back again. INy is a power of 2, each
FFT costs 5logNy floating point operations per unknown. The operational cost for tl
V-shift is then

. [21+ 10 log, N, AW,
Vshift Ops= (31)
[29+ 10 log, Ny], SW,

per unknown. An RK3-based V-shift would require five fewer operations for the AW meth
and seven fewer operations for the SW method. Note that if the V-shift had been perfor
using a convolution sum,

Ny/2—1
Ex t)a fxut) & > E™ ) f (1), (32)
k=—Ny/2
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then the computational cost would be on the ordeDdoRNy/ log, Nx) per unknowrhigher
than by multiplyingE(x, t)a, f (X, u, t) in x-space. For this reason, we perform the V-shif
in realx-space with the Hermite coefficienfd'(x, t).

The E-field calculation requires the evaluation of Eq. (28), which costs

[2 + 5100, Ny Ny, AW,
Ecalc Ops= (33)
[(Ny+1) + 5log, Ny] Ny, SW,

floating point operations. This cost assessment includes the one FFT of the E-field m
E™(ta) onto a spatial grid in the forr& (x;, ta). The sum over the even SW Hermite mode
in Eq. (28) increases the cost of the SW Hermite E-field evaluatic@ @y,) over the cost
of the AW Hermite E-field evaluation.

Adding the operation costs for the X-shift, V-shift, and E-field calculation, the tot
number of floating point operations per time-step for the RK4-based splitting method
roughly

. [46 + 10log, Nx], AW,
Total Ops(split RK4) = (34)
[55+ 10log, Ny], SW,

per unknown. An RK3-based splitting scheme would have about 12 fewer operations
coefficient compared to these RK4-based schemes. However, if we compare the ratio «
Courant stability limits [30], Atmax]rke = 1.63 [Atmax]rk3, We find that to obtain the same
stability as the RK4-based scheme the “real” effort for the RK3-based splitting metho
approximately

) [57+ 161og, Nx], AW,
Total Ops(split RK3) ~ (35)
[68+ 1610g, Ny], SW,

per unknown. FoiN, = 64, the operational workload for the RK3-based scheme is 44
larger than that of the RK4-based scheme. The Courant-limit dictated by a few very
particles at the edge of phase-space demands a large stability regime not found in an
based scheme.
Let us now consider the use of an unsplit scheme. For example, transforming the VI
equation using the SW Hermite basis would yield
afn+t af" 171 geE(x,

. U
fox,t) = — [v/n+1—— +/n
. 2 aX vn 0X V/2me

J)[mfn+l_\/ﬁfn_l]'
(36)

This set of equations may be advanced forward in time ftoto t, + At using an RK4
scheme if the spatial derivatives are performedzsim/L) f ™(t) in Fourier-transformed
space at a cost of approximately 10Jdd, operations per unknown. Using RK4, the tota
operational cost is estimated to be

Total Ops(unsplit RK4 = [49 + 40log, Ny] (37)

per unknown. FolN, = 64, the RK4-based method splitting scheme is nearly 2.5 tim
faster than the unsplit RK4 scheme, simply due to the numb&y Of(x, t) evaluations.
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TABLE 1
Computational Efficiency Estimates

Time-stepping Operations Relative workload vs split
method per coefficient Relativ®tmax RK4 (SW) with N, = 64
split RK4 (AW) 46+ 10log, Nk 2.82 0.91
split RK4 (SW) 55+ 10log, N, 2.82 1.00
split RK3 (SW) 44+ 10log, N, 1.73 1.45
unsplit RK4 (SW) 49+ 401og, Ny 2.82 2.79
unsplit AB3 (SW) 15+ 10log, N, 0.72 2.53

Note.A summary of the operational costs, time-stepping stability limits, and relative workload for each
the time-stepping methods considered here. The RK4-based splitting method, which is used here, has the
relative workload. In simulations, we found that the workload was aboyi$eéper coefficient per time-step.

Last, we should consider an explicit time-stepping method such as AB3 [30] which L
solutions from past time-steps and can avoid the repeated RHS evaluations of Eq.
required by the unsplit RK4-based scheme. The AB3 scheme, written in compact forn

F(to + At) = F(to) + At[aF (to) + bF (t, — At) + cF(t, — 2A1)], (38)

whereF (t) =[ f"(x, t)] and the constants axe, b, ¢) = %2(23, —16, 5). The operational
cost estimate for an unsplit AB3 method is approximately 150 log, Nx] operations
per unknown and is clearly cheaper than the estimated-39 log, Nx] operations per
unknown for the split RK4-based SW Hermite method. However, if we consider that
Courant stability limit imposed by the AB3 method istf,ax] ass = 0.255 [Atmax] ks, WE
see that we are required to take smaller time-steps to obtain comparable stability for a (
simulation time. FolN, = 64, the estimated workload ratio between the unsplit AB3 ar
split RK4 methods is approximately

(15+ 10 |ng Ny > < [AtmaﬂRM)
55+ 10log, Nx / \ [ Atmax ass

— 2.56. (39)
N, =64

In this case, the unsplit AB3 method is 2.5 times slower than the split RK4 method.
All of the operational costs discussed in this section are summarized in Table 1. A
considering the stability requirements, these cost estimates demonstrate that the RK4-
splitting scheme is efficient and well-suited for use with the Hermite methods describe
this article. Although a higher accuracy time-stepping scheme could probably be desig
we have traded for efficiency and stability by choosing the RK4-based splitting schem

PHYSICAL CONSERVATION PROPERTIES

A numerical algorithm should, at least, approximate known conservation laws for
physical system that is being modeled. For collisionless plasmas, this is an especially i
esting challenge because such plasmas possess an infinite number of conserved qui
[31]. Although a discrete model for a physical system could never capture all of these «
servation laws, we would hope that a numerical kinetic method could inherently cons
important measurable quantities such as particle number, momentum, and total ener
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TABLE 2
Conservation Properties

Fourier-Hermite method Particles Momentum Energy
AW exact (At o(At®)
SW, even O(Atd) O(At) O(ALt®)
SW, odd O(At) o(At?) O(At)

Note.A summary of the fully-discrete conservation properties versus time#stefpr
the two Fourier-Hermite methods. Note the dependence on Hermite expansion order (even
or odd) for the SW Hermite representation. TBéAt®) errors come strictly from the RK4
method.

the limit of continuous timg At — 0), the AW Hermite method conserves particles, mc
mentum, and total energy; in contrast, the SW Hermite method [24] conserves both part
and energy folN, even, yet it conserves only momentum fdy odd. The purpose of this
section is to determine whether or not the established conservation properties of thes
Hermite methods survive temporal discretization under the RK4-based splitting sche
For convenience, the conservation veraiscaling results derived in this section are sun
marized in Table 2 and the maximum conservation errors measured during simulation
be shown later) are tabulated in Tables 3 and 4.

Particles

The total number of particles in the system is given by the integrék®f u, t) over all
phase space. For the Fourier—Hermite methods this can be written

nz/ f(x,u,t)dxdu (40)
Ny 00

=LU> f°”(t)/ W, (v) do, (41)
n=0 -

where we use@®(x) =1, v=u/U, and the orthonormality relation for the Fourier basis
For the AW Hermite method[ >, Wn(v) dv =80 becausel®(v) =1 and Eq. (41) becomes

n(t) = LUF%). (42)

The coefficientf °°(t) is not affected by the X-shift or the V-shift, garticles are conserved
using the AW Hermite method, even under temporal discretization.
However, with the SW Hermite weight functions, Eq. (41) becomes

Ny
) =LU Y lon fO0), (43)

n=0
even

where the coefficientsy, are given recursively in Eq. (26). The X-shift does not affec
m =0 Fourier modes, so patrticles are conserved during that step.
The change in particle number during the V-shift may be written as

Ny
An= /[n(x, th) — N(X, t)]dx=U ) IOn/ [0, t) — F'(X, ta)] dXx.  (44)
n=0

even
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TABLE 3
Conservation during Landau Damping Simulations

Conserved quantity SW (even) SW (odd) AW
Particles 6x 1071° 2x 107 1.4 x 10716
Momentum 6x 10°%° 25x 1078 15x 1018
Total energy Ix 1071 8x 10 1x10%
J= [[f2dxdu 1x 10 3x 1074 1x 102

Note.Maximum conservation errors (relative) during Landau damping simulations for
the distribution and discretization listed in Table 5.

Taylor-expandingf "(x, tp) in At using the V-shift equation (23) for the time-derivatives
we find that

_Ah/EE/E(x,ta)fNu(x,ta)der O(At?) | + O(At%). (45)
2 Me N——

RK4error

An= |0,Nu,1

Excluding the O(At®) RK4 error, An is proportional tolgy,_1. If Ny is odd then
lo.n,—17# 0 and An~ O(At); the magnitude ofAn, however, which is proportional to
fNu, can be made exponentially small by increashgor by varyingU appropriately. If
N, is even, on the other hand, thparticles are conserved to @\t°) since only the RK4
error term survives; therefore fdf, even, particle conservation errors are determined |
the accuracy of the time-stepping scheme used for the V-shift.

In Tables 3 and 4, we show that the AW and SW (even) Hermite methods cons
particles nearly at round-off level10~° errors), whereas the SW (odd) Hermite metho
has particle conservation errors ranging front4t 104,

Momentum

The total momentum of the system may be written

p(t):me//uf(x,u,t)dxdu (46)
=meLU?) " 1) /OO VW, (v) do (47)
TABLE 4

Conservation during Bump-on-Tail Simulations

Conserved quantity SW (even) SW (odd) AW
Particles 4x 10715 45x 10 22 x 1071
Momentum 58 x 1072 9.2x 10° 4x10%
Total energy Z x 1078 1.5x 1072 7x 1072
J= [[f2dxdu 13x10° 13x10° >1x 10

Note. Maximum conservation errors (relative) during bump-on-tail simulations for the
distribution and discretization listed in Table 7.
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after using®®(x) =1, v=u/U, and the Fourier orthogonality relation. Using the AW
Hermites we know = W'(v)/+/2 so we may evaluate the integrab ¥, (v) dv to yield

meLU? o,
t) = ——— f75(b). 48
p(t) 73 ) (48)
As in particle conservation, momentum is conserved during the X-shift because-ttie
Fourier modes are not changed.
To assess the change in momentum during the AW Hermite V-shift, it is more conven
to use

meU?2

Ap= /[p(x, th) — P(X, ta)] dx = — /[fl(x, ) — fix )] dx.  (49)
NZ)

Examining the AW Hermite V-shift equation (23), we find tHat(x, t) changes linearly in

At becausef 9(x, t) = 0. In fact, the change in momentum during the AW Hermite V-shi

is simply

. L/2
Ap = %/meuzfl(x,t)dx = At/ E(X, ta)p(X, ta) dX, (50)
t=t, -

L/2

=la

wherep (X, t3) = geU fO(x, t,) is the charge density. Using Gauss’ law and the periodici
of the fields, we find

€At [L/? 8E2(x,ta)dx_

Ap = =0. 51
P="5 ], ax (51)

Hence,momentum is conserveging the AW Hermite method. There is ho RK4 erro
because‘.l(x, t) is constant.

In contrast, the total momentum for the SW Hermite method is given by a sum ovel
of the odd Hermite modes,

Ny
p(t) = meLU? >~ M)l (52)
Tad
where the coefficientt;, may be generated recursively by, = /n/(n — )11 ,_» with
I11 =274, The X-shift, as before, does not affect the= 0 Fourier modes, so momentum
is conserved during this step.
For the SW Hermite V-shift, we analyzed the conservation of momentum [29] by Tay
expandingp(ty) in At and evaluating the time-derivatives of momentum using Eq. (23)
find

Ap oc Atlyn—1 TV (X ) E(X, ta)

At?
+— [Tng—2 PN X ) + Toong—1 TV (X, t) [ E(X, o). (53)
If Ny is even thenlyn,—17#0 and Ap~ O(At). But if N, is odd thenly n,—1 =0 and
lon,—17#0, sOAp~ O(At?). Therefore, due to time-splitting, momentum is never cor
served using the SW Hermite method. From bump-on-tail simulations to be shown I
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FIG. 3. Simulations results showing momentum conservation vetdufer SW Hermite methods with even
and odd Hermite expansion orders. The time is normalized by the plasma period “tau.”

the relative change in momentum versus time (see Fig. 3) confirms that the errors scals
O(At) for N, even andO(At?) for N, odd.

Note, if we have particle conservation by makiNg even, momentum conservation is
limited to O(At). If we getO(At?)-accurate momentum conservation by makigodd,
particle conservation is onl{(At). This is an annoying limitation of the SW Hermite
method. However, as before, increasing the rate of spectral convergence will improve
conservation of momentum (see Eq. (53)) by makify(x, t) and f Ne—1(x, t) smaller.
Also, in cases in which the electric field is small or decreasing, the conservation of mon
tum can be very good.

In Table 3, we see that the Hermite methods have momentum conservation errors at re
off level during Landau damping simulations. During bump-on-tail simulations, the A
Hermite method has the lowest momentum conservation errors whereas momentum ¢
were about 6% when using the SW (even) Hermite method (see Table 4). It is impor
to note, however, that the even-order SW Hermite momentum conservation errors ce
reducedseveral orders-of-magnitude by lowering the velocity-sdalésee Fig. 5); this
momentum error reduction demonstrates one of the practical uses of improved spe
accuracy that can be gained through velocity-scaling.

Total Energy

The total energy of the system is the sum of the kinetic and potential energies,

H= % //uzf(x, u,t)dxdu+%°/|E(x,t)|2dx. (54)
KE PE
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The splitting technique decouples advection and acceleration, so we knowKiat 0
during the X-shift but is nonzero during the V-shift. In addition, because weBokdt) =
E (X, ty) during the V-shift, we know thak PE= 0 during that step. Potential energy change
via spatial redistribution during the X-shift only. Now we need to calculate the change
kinetic energy (KE) and potential energy (PE) for the AW and SW Hermite methods
determine whether or nadt (KE + PE) = 0. TheO(At%) RK4 error will be neglected in this
analysis of energy conservation because, as we will see belo@the®) splitting error
dominates.

For the AW Hermite method, Eq. (54) may be evaluated to yield

H= Emeu3[«/—f°2(t) + )] + = Z |[EM™(1)|2 (55)

after using the substitutiong®(v) = ®°(x) = 1 andv? = 3 (v/2¥2 + W°). During the X-
shift, the f ™ modes are invariant, so KE is constant.
During the AW Hermite V-shift AKE may be more easily analyzed using the formula

3
AKE = eV

/[ﬁ(fz(x,tb)— f2(x, ta)) + (FO(x, tp) — FO(x, t))] dX,  (56)

where the subscrigt denotes evaluation at “time, at the start of the V-shift. The second
term in the integrand is zero during the AW Hermite V-shift becaﬂ%ex, t)=0; i.e.,
particles do not free-stream. Taylor-expandiffax, tp) in Eq. (56) and using Eq. (23) to
evaluate the time-derivatives 6f(x, t,) while holding E(x, ty) = E, constant, we find

_ quZEa At2 TUQ2EZ
AKE = /At { Nz f1(x ta)] - { me fP(x,ta) | dx (57)
. At? 5
= —EO/ At EaEa — 7a)pe(x) Ea dX, (58)

where we have identified the local plasma frequengy(x) =Ug3 f°(x, ta) /e;me and

E.=0.U2f1(x, ta)/+/2. The higher-order terms are exactly zero becate, t) =0
during the AW Hermite V-shift. We know that during the V-shi(x, t) = —w%eE(x, t)
is satisfied, so

At?

with no higher-order terms.
The total change in PE is the sum of the individual changes in potential energy (
during the entire time-step, accounted for individually and written

APE= %’/(Eit— E2) + (EZ — E2) + (E2 - E?) dx, (60)
X-shift V=-shift X-shift

where we have used the notati&ix, t + At) = Ex¢, E(X, ty) = Ep, etc. During the X-
shifts, we can Taylor-expanB3, and E3 in time and cast them in terms &2 and E2,
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respectively, so that
2 2 - Atz - = \2 3
E3 = Eb+AtEbEb+T(EbEb+(Eb) )+ O(At®) (61)

. At2 . .
E5 = EZ — AtE,Eq4 + - (EaEa + (Ea)?) + O(AL3). (62)

If we recall that during the V-shiftE, = E,, Ep = E4 + AtE, + O(At?), andE, = Ea +
O(At), then the total change in PE reduces to

. AtZ2 .
APE= 60/ (At EaEa+ 7EaEa) dx + O(At® (63)

which is nearly canceled by the changes in KE shown in Eqg. (59), making the chang
total energyO(At3). The splitting scheme limits energy conservation in the AW Hermit
method toO(At®) by accelerating the particles with the wrong E-field during the V-shif
energy conservation for the AW Hermite method is plotted versus timesstep Fig. 4
with data taken from simulations to be shown later.

For the SW Hermite method, we may re-write (54) to find that the total energy of
system is given by

Ny

oL < m
;)(Zn+1)I0nf°”(t)+ezzm:|E ®2 (64)

even

_ Lmu3

H
2

where we used’ v2W,(v) dv = (2n + 1)lo,. As before, KE does not change during the

1e-06

Nu=64, AW —— o
Nu=64, SW (even) -8—
slope = 1.00 Nu=65, SW (odd) —~—

1e-07 |-

1e-08
1e-09 |-

1e-10 |

1e-11

slope = 3.00

dH(T)YH(0), energy errors

1e-12

1e-13

1e-14

1e-15
0.0001 0.001 0.01
dt/tau
FIG. 4. Simulation results showing energy conservation versusom AW and SW Hermite methods (both
even and odd expansion ordey are shown). The AW Hermite and even SW Hermite data overlap.
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X-shift. During the V-shift, the change in kinetic energy is

. . At?
AKE = KEJaAt + KEla—- + O(At3), (65)

wherea represents evaluation of the time-derivatives at “timgdiefore the V-shift. Taking
the time-derivative of KE and using the SW Hermite V-shift equation (23), we find

meU3
KE = —< Z(2n+1)I0n/f”(x,t)dx (66)
2 n=0

even

2Ny +3

= —EO/E(X, ta) E(x, t) dx — geU? |1,NU/E(x, ta) FN(x, t)dx. (67)

truncation error

Higher-order time derivatives of the truncation error term are also proportionakto If
Ny is even, we find
: . A2 AL

AKE = —¢, / EaEaAt + EaEa—r +Ea? dx + O(At%). (68)
The O(At®) term does not cancel th@(At®) term in APE (see Eq. (63)) because the
E-field is held constant during the V-shift; hence, the error in energy conservatidd, for
even isO(At®). However, ifNy is odd, then the truncation error in Eq. (67)3$At) and
the error in energy conservation for the SW Hermite method is given by

2N, +3
AH:Atqu2< “2+

) 1., / E(x, ta) f NV (x, t) dx. (69)
Once again, we have an important difference between even-order and odd-order expar
of SW Hermites; energy conservation versus expansion ordeaiddring simulations is
shown in Fig. 4. Improved energy conservation can be obtained by reducing the magn
of fMNu(x, t) with a spectrally accurate SW (odd-order) Hermite representation; howe
the splitting error dominates the even-order SW Hermite energy conservation errors st
in Fig. 5, so that velocity scaling has little or no affect. An unsplit time-stepping sche
could possibly find enhanced energy conservation through improved spectral accurac

A summary of the conservation properties for the AW, even-order SW, and odd-ol
SW hermite methods is given in Table 2. The AW Hermite method conserves particles
momentum, limited only by the RK4 scheme; energy conservation error for the AW I
mite method is dominated by the splitting scheme. The SW Hermite method, on the ¢
hand, is limited primarily by truncation in the V-shift equation (see Eq. (23)). The eve
order SW Hermite expansions obtain the best conservation for particles and energy be
these quantities are determined by the even Hermite coefficients. Similarly, the odd-c
SW Hermite method obtains the best conservation for momentum, which is determine
odd Hermite coefficients. This even versus odd conservation trade-off, which is fam
from PIC methods [4], is an annoying limitation of the SW Hermite schemes develo
here.

Another important quantity conserved by the SW Hermite method but not discus
above is integral = [[f2(x, u,t) dx du Weighted residuals methods based on SW He
mites naturally conserve this quantity while, in contrast, AW Hermite methods cannot [
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FIG. 5. Conservation of momentum, energy, aﬁﬁff? is plotted versus normalized velocity sc&lg vy,
showing two orders-of-magnitude reduction in momentum errors with decreasing velocity scale length. Er
and f f 2 errors are not noticeably affected for the SW (even) Hermite method.

The maximumJ-conservation errors are tabulated in Tables 3 and 4. While errdraie
on the order of 10'* for the even and odd SW Hermite methods, errodifor the AW
Hermite method are at or above'#0n fact, during bump-on-tail simulations shown below
the AW Hermite method becanmumerically unstablafter the quantityd became large.
The inherent lack of stability in the AW Hermite method is due to its inability to consérve

SIMULATIONS

By assessing the abilities of the Fourier—Hermite (FH) algorithms to model well-kno
linear plasma physics and by understanding their numerical limits we can gain confide
in their ability to likewise model nonlinear phenomena accurately and efficiently. In tl
section, we will test and compare these FH methods by modeling the electrostatic
lution resulting from (a) an initially perturbed, yet stable, equilibrium Maxwellian velo
ity profile and (b) an initially perturbed and unstable equilibrium bump-on-tail veloci
profile.

Landau damping and growth of some electrostatic waves, two phenomena in collisior
plasmas governed by similar physical mechanisms are the result of a resonant cou
between the phase velocity of an electrostatic wave anldtia¢velocity profile of charged
particles. Oscillation frequencies for a stimulated electrostatic mode, on the other hanc
determined by thglobalvelocity profile. Therefore, optimal spectral representations of tl
velocity distribution, which can be obtained by proper choice of a velocity scaled Hern
basis function, will produce good agreement to linear theory with reduced computatic
effort, i.e. fewer coefficients stored for equivalent accuracy requirements, as compar
unscaled Hermite representations. In both sets of simulations, fidelity of the solutions
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FIG. 6. A Maxwellian velocity profile.

be established by comparisons to linear kinetic theory and to the results of one-dimens
(1d-1v) PIC simulations using ES1 [4]. In order to demonstrate the long-time stabi
and accuracy of the method, we also compare our method to the results of a “methc
characteristics” Vlasov method [21] similar to the method of Cheng and Knorr [9].

Linear Landau Damping

The initial input distribution to be used is a simple Maxwellian (see Fig. 6) in veloci
space with thermal velocity,,

2
f(x,u,0) = %ﬁh exp{—uz} , (70)

Uth

and a cosinusoidal profile in space,
g(xX) = No[1 + € cogKx)], (71)

characterized by the number density, perturbation amplitude, and a wavenumber
K =2rk/L for some stimulated integer mode numlkerin these simulations, we will
analyze an electron plasma, charge-neutralized by seffiy Fourier mode to zero.

A representative example of the AW and even-order SW Hermite simulation result
shown in Fig. 7, illustrating the damping 0E*(t)| with time. The time coordinate has
been normalized by the plasma periogh = 27 /wpe, Wherewpe = 1.0 s~* in these Landau
damping simulations.

In the simulation results shown, no attempt to optimizevas made (i.el) =1) so we
notice in Fig. 7 that after several oscillations the linear damping ceases and is follo
by a recursion of the E-field. Landau damping is due to phase-mixing (destructive ir
ference) of the infinite number of oscillation modes that are supported in a real pla
[33]. Because a discrete velocity grid cannot support a continuum of phase velocities,
crete Vlasov methods are unable to indefinitely mimic this process. The time at wi
destructive interference of the oscillating modes ceases is known asdimesion time
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FIG. 7. Comparison of Landau damping results using AW and SW (even) Hermite methods, demonstre
the damping of an electrostatic wave versisu, where tau= t,. = 27 /wp.. These simulations were unscaled,
i.e. U=1, thus yielding a very short recursion time of abotfiz2..

[11, 14, 26] and is given approximately ..~ /(K Au), where Au is the velocity
resolution of phase-space grid aKdis the wavenumber of the stimulated electrostati
wave.

The recursion time, which is inversely proportional to the velocity resolution, can
extended by (a) increasing the Hermite expansion okeor (b) decreasing the velocity
scaleU . We recall thatAu ~ U //N, and so the recursion time scales as

w+/N
Trecur ™~ KU . . (72)

Decreasing the velocity scalé lengthens the recursion time in a linear fashion yet doe
not increase the computational effort. Increasing the Hermite expansionyden the
other hand, only increases recursion time liK®&, while increasing the computational
workload like Ny. Although loweringU will eventually lead to poor modeling of the tails
of the distribution, moderate reductiondfcan lengthen recursion time significantly (see
Fig. 8).

In addition to lengthening recursion time, proper selection of the velocity &talen
enhance the agreement of simulated damping with linear Landau damping theory. This
is confirmed in Figs. 9 and 10 for the AW and SW Hermites, respectively. In these pl
the errors in frequency and growth rate as compared to linear Landau damping theor
are shown versus velocity scalg vy,. Solution of the dispersion relation for a Maxwellian
velocity profile (see Table 5) yielded a frequengyeor,= 1.28525 s* and damping rate
Yiheory= — 0.066237 s for the stimulated modke= 1. The phase velocity of the damping
electrostatic wave, in this case, i =0.2046 m/s. From these figures, we see that tr
optimal range of velocity scales for the AW Hermite method& @ < U < 1.2vy, yielding
dispersion errors near 1% in the damping ratand less than 0.05% in the oscillation
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Lengthening of the recursion time over which linear Landau damping can be modeled is accompli

FIG. 8.
by proper selection of the velocity scale

frequencyw. The optimal range for the SW Hermite method i8@, < U < 0.6vy,, with
dispersion errors very similar to those found using the AW Hermite method. The lo\
bound on th&Jyuima range is determined by Eq. (20) for the AW Hermite method, where
the lowerUgpima bound for the SW Hermite method is determineduyx =~ vg.
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FIG. 9. A variable velocity-scalé&) can greatly improve the agreement between oscillation frequencies &
damping rates generated by AW FH simulations and those expected from the linear Landau damping thec

retain high accuracgndlong recursion time, we find the optimal value lies ngas 0.8v,4p.
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The unscaled Landau damping simulations using 1 with 64 Hermite functions, also
shown in Figs. 9 and 10, yielded dispersion errors between 10 and 100%. These sir
tions demonstrate that a proper choice of velocity sthlean yieldorders of magnitude
improvement in modeling linear Landau damping when using Hermite basis functions.
locity scaling of Hermites has not been utilized before in the numerical simulation of
nonlinear Vlasov—Poisson equations.

TABLE 5

Landau Damping Simulation Input
Parameter

Symbol Value used [units]
Number of PIC particles Np
Number density

Thermal velocity

4k-128k
n 1.0 [sheets/m]
Vth 0.56568542 [m/s]
Electron mass me 1.0 [kg]
Electron charge e -1.0[C]
Permittivity € 1.0 [F/m]
Spatial resolution Ny 64 (FH) or 128 (PIC)
Hermite velocity resolution Ny 64
Temporal resolution At 7.9974x 10 [ty
Spatial length L 27 [m]
velocity scale U /vih Variable
Perturbation amplitude €
Perturbation mode number

0.001
k 1

Note.Standard input values for ES1 and FH comparison simulations of Landau
damping in an electron plasma with a Maxwellian velocity profile.

1.8

FIG. 10. A variable velocity-scal& can greatly improve the agreement between oscillation frequencies a

damping rates generated by SW FH simulations and those expected from the linear Landau damping theor
optimal value lies nedd = 0.4v,,.
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FIG. 11. PIC (ES1) results showing Landau damping of the stimulated electric field amplitude with til
versus particle number, ranging from 4000 to 64000 particles. Damping of the electric field continues unti
multiple-beam instability dominates. Here, the perturbation parametet 001.

Conservation errors for both AW and SW method were relatively low. Using the veloci

scale values dfl /vy, = 0.4 (SW) andJ /vy, = 0.9 (AW), the maximum relative errors were
calculated and tabulated in Table 3.

Landau Damping Comparisons

Using a standard and well-documented PIC code ES1 [4] and the Maxwellian be
input “LANDAU.INP” provided with that software, we generated Landau damping resu
as shown in Fig. 11. For a fair comparison of accuracy, our FH simulations used the s
inputdistribution and similar velocity resolutions. The FH simulations We¢t 64 Fourier
modes and the PIC simulations udegd= 128 spatial grid points, so the PIC simulations ir
fact had a greater spatial resolution. The input deck for the PIC/FH comparisons is st
in Table 5.

Figure 11 shows how the variation in the PIC E-field evolution depends on the nurr
of particles in the system (ranging from 4000 to 64000 macropatrticles). Note that t
is a numerical multiple-beam instability [4], due to the inability of PIC codes to perfec
load an initial Maxwellian velocity profile. In PIC simulations, a Maxwellian velocit
distribution is often approximated by initially prescribing several monoenergetic bee
of macroparticles; eadbeamlet having a specific velocity and density, contributes to th
initial velocity profile in a way that approximates a Maxwellian (this is called a “co
start”). Macroparticle velocities can be then randomized about their mean beamlet vel
in order to reduce the artificial multibeam instability by filling in the phase-space holes
is called a “warm start”). However, the “warm start” has the difficulty in that this initic
randomization (numerical noise) may overwhelm the initial electostatic perturbation tc
studied. In the PIC simulations shown here, a “cold start” is used.
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TABLE 6
Landau Damping Results

Method w+iy % error
Linear theory 1.28525-i10.066237 0.0
PIC, N, = 16000 1.403+i0.0110 9.2+i116.6
PIC, N, = 32000 1.4706-i0.0103 14.4+i84.5
PIC, N, =64k 1.290-i0.0541 0.40+i18.3
PIC, N, =128k 1.289-i0.0657 0.33+1i0.75
AW Hermite 1.285-i0.0672 0.038+i1.464
SW Hermite (even) 1.285i0.0672 0.038+i1.464

Note.Comparison of the Landau damping dispersion errors between a PIC code
and the Hermite methods. The real portion of the percent error corresponds to
frequencyw; the imaginary portion corresponds to the damping sat&ampling
errors (systematic errors in measuring omega and gammay) were approximately
+0.26% for all cases.

Table 6 shows comparisons of PIC and FH linear damping results with linear the
The frequencies and growth rateg in these tables were determined by finding the peal
of |EX| from the numerical run, determining the frequency of these peaks, and then t
damping rate. There are therefore errore iandy (about 0.3%) due to the sampling of the
data in time. The FH method, using 4096 unknowns, yielded results more accurate tt
32000-particle PIC simulation. The simulation time for the FH method was about 55 <
a dedicated IBM RS6000 39H workstation; for the 32000 particle PIC simulation, it w
165s.

Additionally, the PIC Landau damping is limited by the artificial multibeam instability
to see long-time Landau damping, the required particle number in PIC simulations n
increase as the perturbation parametatecreases. The FH methods do not suffer th
difficulty.

The FH method, which is limited by recursion but not by the multiple-beam instabili
can exhibit long-time Landau damping for a wider range of perturbation ampkttizn
does PIC (see Figs. 12 and 13). For this reason, a spectral kinetic method is superior t
for the study of warm plasma dynamics in cases where a small perturbation amplitude
physically relevant.

To further validate the scaled FH method presented here, we directly compared
long-time nonlinear Landau damping of a monochromatic wave in an electron plasm
results presented in [21]. In Fig. 14, we show the initial damping, saturation, and amplit
oscillation of thek = 3 electrostatic mode versug;t up toT = 30Qw,,2. In our simulations
using the scaled SW FH method wity =64 Fourier and\, = 160 Hermite functions
(10240 unknowns), we measured the frequency, damping rate, and recursion time -
w=1.160 y =—-0.0127, andrecyr & 25(1;)561, respectively (herei =0.3 andwpe=1).
The theoretical values for this electrostatic mode:ate1.1598 and, = —0.0125, yielding
an overall error of 0.017%- 1.6i%. The expected recursion time is 2)%5 A velocity
scale length ol = 0.225v, was selected in order to maximize the velocity resolution ne
the predicted phase velocitynase/ vin = 3.866. Relative errors in particle, momentum, an
energy conservation were at mosk4071°, 10714, and 2x 107, respectively. The integral
of 2 never changed by more than~fduring the entire simulation.
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FIG. 12. PIC (ES1) results showing Landau damping of the stimulated electric field amplitude with til
versus initial perturbation amplitude,

Previous comparisons of Hermite-based methods [21] required 1600 AW Hermite p
nomials in order to match the accuracy that was found using a method of characteri
[9, 21] with 128 grid points in velocity. However, with the proper velocity scaling, we on
needed to use 160 SW Hermite functions. In fact, in simulations whgsg/vin < 1, even

T T T . . _
epsilon=1e-t —
epsilon=1e-8 ---—-- ]
epsilon=1e-5 -----
epsilon=1e-7 -~ 1

0.1
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FIG.13. Fourier—-Hermite simulations can demonstrate linear Landau damping induced by small perturba

€ and are not affected by the multibeam instability. This may allow the modeling of initially low-noise systen
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FIG. 14. Fordirect comparison to results shown in Gagne and Shoucri [21], a SW FH simulation of long-ti
Landau damping is shown, demonstrating the long-time accuracy and stability of the method. Previous uns
Hermite-based methods required 1600 polynomials to obtain a similar recursion time@a‘;ZBBnereas our
scaled method required only 160 Hermite functions.

fewer Hermite polynomials would be needed because the resolution is highar adar
for fixed Ny andU /vy,. With this in mind, Hermite-based methods are only comparable
other Vlasov methods when propesigaled in low vpnhaseSimulations, the Hermite methods
can be superior.

Comparisons to PIC: Bump-on-Tail Instability

In this section, the initial input distribution function is a bump-on-tail (BOT) velocit
profile (i.e., a Maxwellian plus a high-energy warm beam; see Fig. 15) written as

n u? Np (U—vgp)?
f(x,u,0) = g(x P exp(— —) + exp(— ' )] 73
( )= ){ﬁ Vth,p v/ /T Vb (73)

where the main “plasma” distribution is defined by the number demgjtand thermal
velocity v, p. The “bump” distribution is defined by the number density the thermal
velocity v p, and the drift velocityvy p. In these simulations, we will again analyze ¢
background-neutralized electron plasma, with its physically relevant quantities define
Table 7. The initial spatial dependengyx) will again have cosinusoidal form defined
previously in Eq. (71), where is the perturbation amplitudé,is the mode number stim-
ulated, andL is the system length. Only one mode numkewill be stimulated in any
simulation.

Figure 16 shows a representative phase space plot of the distribution function soon
saturation of the electrostatic field; the resonant traps or “cat’s-eyes” are clearly visi
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FIG. 15. A bump-on-tail (BOT) velocity profile.

This simulation used the SW Hermite method with= 64, N, = 64, and an optimal scale

length ofU /vy, = 0.4. Figure 17 provides a quantitative view of the importance of prop
scaling, showing for both SW and AW Hermite methods, the error (modulus of the differe

from linear theory) in the complex time constaat + iy) as a function of scale length

U. In Fig. 18 we compare the E-field growth as computed by the optimized SW Hern
method to that computed by PIC for varying numbers of particles. The PIC results
clearly converging towards the SW Hermite results. This not only validates the Herr
method, but it also demonstrates that PIC requires very many more unknowns to acl

the accuracy of the spectral method.

TABLE 7

Bump-on-Tail Simulation Input

Parameter Symbol Value used [units]
Number of PIC particles Np 64000-1024000
Number densities np 1.0 [sheets/m]

n, 0.01 [sheets/m]

Thermal velocities Uth,p 0.28284271 [m/s]

Vthp 7.0710678e-2 [m/s]
Drift velocity Vd.b 1.0 [m/s]
Electron mass me 1.0 [kg]
Electron charge e -1.0[C]
Permittivity € 1.0 [F/m]
Spatial resolution Ny 64 (FH) or 128 (PIC)
Velocity resolution Ny 64 or 65
Temporal resolution At 7.9974x 1073[1pe]
Spatial length L 207 [m]
Velocity scale U /v variable
Perturbation amplitude € 1.0x 10
Perturbation wavenumber k 10

Note.Standard values for comparison of ES1 and FH bump-on-tail simulations.
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FIG. 16. A plot of f(x,u,t) contours in phase-spadg, u) at w,t =327. The “cat’s eye” phase-space

structures are moving anase= 3.5vip. In this bump-on-tail simulation, we used the SW Hermite method witl
k=2, N, =N, =64, andU /v, =0.4.
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FIG. 17. A comparison of AW versus SW (even order) Hermite methods, varying the velocityld¢ajg.
OptimalU /vy, ranges from 0.4 to 1.3 for the SW Hermites; for the AW Hermite method, a narrow optimal rar
lies nearJ /vy, =0.8. These results are taken from the BOT simulations described in this article.
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FIG. 18. PIC simulations of the BOT instability are shown to converge to the Fourier-SW Hermite result:
the number of PIC particles increases from 16000 to 1024000. The FH simulation was completed over 6
faster than the 64000 particle PIC simulation.

We may clearly see that the Hermite methods are superior to the PIC methods for v
plasma simulations by comparing both quantitatively to linear theory. In Table 8 we
that the PIC code can predict the oscillation frequency of the electrostatic mode to wi
1% of linear theory, and as well as the Hermite methods, by using about 256000 parti
However, the growth ratg of the mode is still poorly modeled by PIC. Even using ove
500000 particles, the error in the PIC growth rate is still almost 3%. In contrast, the .
Hermite schemes, using 4096 unknowns, predicted botimdy to within 1% of linear
theory. The PIC simulation with 64000 particles had a runtime of 5.47 minutes on a dedic

TABLE 8
Bump-on-Tail Results

Method w+iy[l/sec] % error

Linear theory 0.9295028i0.1084353 0.0

PIC, N, =64000 0.9363793-i0.0898235 0.746-i17.2%
PIC, N, = 128000 0.9326943 i0.0940847 0.343-113.2%
PIC, N, =256000 0.9286062 i0.1010277 0.09%i6.83%
PIC, N, =512000 0.928605% i0.1053760 0.09%i2.82%
FH, SW (even) 0.9288249i0.1076992 0.073-i0.68%
FH, SW (odd) 0.92882490.1076980 0.073-i0.68%
FH, AW 0.9289522+i0.1114054 0.059-i2.74%

Note.Comparison of the BOT dispersion errors between a PIC code and the Hermite
methods. Frequencies and growth rates were taken from E-field oscillations between
6 and 1Gpe. Sampling errors are approximately 0.26% for all cases.
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IBM RS6000. The SW FH simulation had a runtime of 0.89 minutes on the same macl
andyielded much higher accuracy.

The AW Hermite method, while performing better than PIC at earlier simulation times,
not perform as well as the SW Hermite method in the long run. Specifically, the AW Hern
method became unstable at long times due to poor conservation of the intedraltioé
quantity [ [ f2dx durose exponentially throughout the simulation to about 6000% after t
saturation of the E-field. During the time of frequency and growth rate measurements (li
growth), the errors irf [ f 2dx duranged from 20% up to 400%. Although tifi¢f2dx du
error is contained primarily in the higher order Hermite coefficients which are not direc
used in calculating the E-field, the high order Hermite modes grow exponentially and rel
first the distribution function and then eventually the E-field useless. The inability of 1
AW Hermite method to conservg( f2dx dumakes the method unsuitable for long-time
simulations.

The SW Hermite method, in contrast, does not display this numerical instability. T
distribution functions produced by it are physically reasonable (see Fig. 16). This be
stability makes the SW Hermite method a better candidate for long time-simulations.

While the SW Hermite methods (even and odd order) were more stable and perfor
more accurately than the AW Hermite method, these two SW Hermite methods yielded
similar results. For the simulations shown here, the maximum momentum conserve
errors (during the linear growth or damping phase) weB110-3% (even-order SW)
and 22 x 10~'% (odd-order SW). Similarly, energy conservation errors wete210-°%
(even) and B x 10%% (odd). Errors in the conservation of the integraféfwvere less than
1.8 x 107% for both methods. As we see in Table 8, modeling of linear phenomena
not noticeably affected by these small errors in conservation. Table 4 shows the maxir
errors in four conserved quantities over the entire run from initial time to saturation of
BOT instability.

DISCUSSION

The methods described in this article have been designed for modeling plasmas
beams with significant velocity spread relative to their drift velocity. Cold charged-parti
beams with widely different drift velocities would be difficult to model efficiently using
these Hermite based schemes because spectral methods, in general, use an effective
space grid with limited velocity resolution. Simulations of systems with large regions
empty phase-space would require prohibitively large Fourier and Hermite expansion or
in order to obtain moderate accuracy.

The Hermite-based methods that we have described are well suited to high acct
simulations of warm plasmas, especially when there are subtle or small scale features
as “cat’s eyes.” We have seen that for such plasmas, the Hermite-based method, with
velocity scaling, can be far more accurate and efficient than PIC methods. And while
methods are computationally simple, the enormous number of particles required to
the accuracy of spectral methods clearly makes Hermite methods an attractive option

Of the two Hermite methods described, symmetrically weighted (SW) and the previol
studied asymmetrically weighted (AW), we have seen that the SW Hermite method is
more accurate and robust. The numerical instability that lurks inside the AW Hern
functional weighting (due to the nonconservationJypfmakes it a questionable choice for
long-time plasma simulations. By contast, the SW Hermite method, with proper scal
appears well suited to high accuracy long term simulations.
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While we have not extensively reported any long-time simulations here, we have in
tigated their requirements. The use of velocity scaling has greatly improved the previo
reported performance of the Hermite methods [21]. Because the plasma is collisior
there will be growth of small scales (filamentation [13]) and the truncation error will k
come increasingly problematic. We will investigate the use of Klimas filtering [11, 13]
avoid filamentation in the symmetric Hermite method in another paper.

While Hermite based spectral methods for plasma kinetics simulation have been triec
largely abandoned before [14, 18, 19, 21], the two new ideas explored in this paper—vel
scaling and the use of a symmetric weighting—give new life to this approach.

APPENDIX A: EVALUATION OF SPLITTING ACCURACY

To evaluate the accuracy of the splitting scheme in Eqg. (5), we begin by first writing
Vlasov equation in terms of the integro-differential operatgsand2, (t) acting on the
distributionf(t) = f (x, u, t)

af(t)

= = [Q2x + QuD]F(), (A.1)

whereQy = —ud/ax andQ,(t) = —E(X, t)d/du. The time-dependence of the E-field is
stated implicitly in the integral operatér,. Taylor expanding Eq. (A.1), we may advance
the initial system statft,) forward in time one time-steft using

. At2..
fexac(to + At) = f(0) + Atf(t)|i—, + 7f(t) + O(At%) (A.2)
t=ty
2 o At 3
= |1 + (2 + Quo) At + ((2x + Quo)* + QUO)T + O(AtY) | f(to),

(A.3)

where the operator®,, and Q2,0 = —E(X, t)d, use E-field information from the system
statef(ty) at timet,.
Similarly, we may write the solutions of the X-shift and V-shift,
At At?

Xatz =1(ta) = <| + —=Qx +

2

2
memw=o+AMMQ+%}@MQ+%%»+“)WQ (A.5)

and multiply these expansions as shown in Eq. (5) to find that
. o At? 3
fspIit(At) = || + (2 + Qua)At + [Qua + (2x + Qua) ]T f(t) + O(ALY), (A-6)

whereQ,, and 2, use the field and current information from the system saéteer the
first advection at “time',.
Subtracting Egs. (A.3) and (A.6), we see the difference is

At? . :
fexact(At) - fsplit(At) = At(Quo — Qua) + 7 [(Quo = Qua) + (Quo + Qx)z

— (Qua+ 209 + O(A3). (A7)
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In the splitting method suggested by Cheng and Knorr [9], the E-field is calculate
“time” t; and heldconstanduring the acceleration phase. Then becadtise t;) = E(x, 0)
+ (At/2)E(x, 0) + O(At?), the acceleration operatofs,, andS2,, satisfy

At .
Qua = Quo+ - Suo + O(At?) (A.8)

Qua = 0. (A.9)

The first-order error in Eq. (A.8) from calculating the E-field at “tinigtancels the second-
order error that arises from holding tlig constant in Eq. (A.7). Therefore, overall, the
error in Cheng and Knorr’s splitting method can be written

fexact(At) - fsplit(At) = O(At3)- (A.lO)

This is the splitting method we shall use in the simulations included in this article. I
not known to this author (JWS) whether or not an accuracy evaluation for the split Vla
system has been previously performed.
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